考虑到人脸表情识别问题在未来的科学应用中可能出现的样本分布不均匀的情况,在提高识别率的基础上,针对这类问题进行了实验研究,将一种改进的AdaBoost算法与SVM结合运用到表情分类当中。实验结果表明,在出现稀有样本的情况下,相对于普通的AdaBoost训练SVM以及单纯的SVM进行多分类的方法,该算法在识别率方面有了很大提高。