机器学习:基础概念查准率、查全率F1-Score、ROC、混淆矩阵机器学习实战:分类器性能考核方法:使用交叉验证测量精度性能考核方法:混淆矩阵精度和召回率ROC曲线训练一个随机森林分类器,并计算ROC和ROC AUC分数 查准率、查全率 对于二分类问题,可将样例根据其真实类别与学习器预测类别的组合划分为真正例TP、假正例FP、真反例TN、假反例FN四种,令TP、FP、TN、FN分别表示其对应的样例数,则显然有TP+FP+TN+FN=样例总数,分类结果的“混淆矩阵”为: 查准率P: p=TPTP+FP p=\frac{TP}{TP+FP} p=TP+FPTP​ 查全率R: R=TPTP+FN