本文对非平衡类数据分类问题进行了概述。首先在简单介绍非平衡类数据基本概念的基础上,分析了非平衡类数据引起的问题及其导致分类性能下降的原因;然后介绍了目前主要的解决方法,分析了现有处理方法的优缺点;最后讨论了未来的研究方向 普通分类问题中,各个类包含的数据分布比较平衡,稀有类分类问题中,数据的分布极不平衡。例如:将一批医疗数据分类为“癌症患者”和“非癌症患者”两个类,其中 “癌症患者”是小比例样本(假设占总样本的1%),称其为目标类,“非癌症患者”为多数类样本,称为非目标类,从大量数据中正确识别“癌症患者”就是稀有类分类问题。由于在数据集中所占比率太小,使得稀有类分类问题比普通分类问题更具挑