问题1:求解如下二重积分 I=∫y=01/2∫x=01−2yxy dxdy. I = \int_{y=0}^{1/2}\int_{x=0}^{1-2y} xy~dxdy . I=∫y=01/2​∫x=01−2y​xy dxdy. 程序1,如下: from scipy.integrate import dblquad area = dblquad(lambda x, y: x*y, 0, 0.5, lambda x: 0, lambda x: 1-2*x) print(area) 结果:(0.010416666666666668, 4.10162012847236