动手学深度学习Task05
用户评论
推荐下载
-
动手学深度学习PyTorch版学习笔记2
卷积神经网络基础 本节我们介绍卷积神经网络的基础概念,主要是卷积层和池化层,并解释填充、步幅、输入通道和输出通道的含义。 二维卷积层 本节介绍的是最常见的二维卷积层,常用于处理图像数据。 二维互相关运
28 2021-01-10 -
伯禹学习平台动手学深度学习2
因为前面那种写法过于累赘,所以改变写作策略,笔记是写给自己看的,所以把自己比较懂的都不写了,每段大概就两三句话让自己回头看的时候能知道这里讲的是什么,学习资料里简短的易懂的可能还会直接贴原文,这样可以
9 2021-01-16 -
伯禹学习平台动手学深度学习3
学习笔记Task4,这部分没什么兴趣应该不会写有关自己的理解了,直接转过来了,虽然其他的也和转载的差不多。转自伯禹学习平台的动手学深度学习课程 机器翻译及相关技术 机器翻译和数据集 机器翻译(MT):
23 2021-01-16 -
动手学深度学习梯度消失梯度爆炸
动手学深度学习:梯度消失、梯度爆炸 内容摘自伯禹人工智能AI公益课程 目录: 梯度消失和梯度爆炸的基本概念 考虑到环境因素的其他问题 Kaggle房价预测# 梯度消失、梯度爆炸以及Kaggle房价预测
14 2021-01-10 -
动手学深度学习循环神经网络
pytorch版循环神经网络实现 import torch import torch.nn as nn import time import math import sys def load_data
22 2021-01-15 -
动手学深度学习pytorch版笔记2
《动手学深度学习》pytorch版笔记2 Task3 过拟合、欠拟合及其解决方案 这部分内容比较简单,写下问题吧,再挖几个坑 1.模型复杂度如何改变,三阶到一阶等 2.L2范数正则化为什么是权重衰减的
43 2021-01-16 -
动手学深度学习卷积神经网络
卷积神经网络 典型的卷积神经网络由卷积层、池化层、全连接层构成。 卷积层 卷积:在原始的输入上进行特征的提取。特征提取简言之就是,在原始输入上一个小区域一个小区域进行特征的提取。 直观的理解卷积 以上
29 2021-01-16 -
动手学深度学习实现DAY2
节选自“ElitesAI·动手学深度学习PyTorch版” Task03:过拟合、欠拟合及其解决方案;梯度消失、梯度爆炸;循环神经网络进阶(1天) Task04:机器翻译及相关技术;注意力机制与Seq
6 2021-01-16 -
动手学深度学习小白笔记三
小白知识点 训练误差和泛化误差 训练误差:模型在训练数据集上表现出的误差 泛化误差:模型在任意一个测试数据样本上表现出的误差的期望,并常常通过测试数据集上的误差来近似。 验证数据集、测试数据集和训练数
14 2021-01-16 -
动手学深度学习小白笔记四
小白知识 二维互相关运算 输入是一个二维输入数组和一个二维核(kernel)数组,输出也是一个二维数组,其中核数组通常称为卷积核或过滤器(filter)。卷积核的尺寸通常小于输入数组,卷积核在输入数组
5 2021-01-16
暂无评论