理解 循环神经网络(Recurrent Neural Network, RNN)是一类以序列(sequence)数据为输入,在序列的演进方向进行递归(recursion)且所有节点(循环单元)按链式连接的递归神经网络(recursive neural network)。 递归神经网络(RNN)相对于MLP和CNN的主要优点是,它能够处理序列数据,在传统神经网络或卷积神经网络中,样本(sample)输入与输出是没有“顺序”概念的,可以理解为,如果把输入序列和输出序列重新排布,对整体模型的理论性能不会有影响。RNN则不同,它保证了输入和输出至少有一端是有序列特征的。 传统的神经网络结构可以归纳为下