网络入侵方式已日趋多样化,其隐蔽性强且变异性快,开发灵活度高、适应性强的实时网络安全监测系统面临严峻挑战.对此,提出一种基于模糊粗糙集属性约简(FRS-AR)和GMM-LDA最优聚类簇特征学习(GMM-LDA-OCFL)的自适应网络入侵检测(ANID)方法.首先,引入一种基于模糊粗糙集(FRS)信息增益率的属性约简(AR)方法以实现网络连接数据最优属性集选择;然后,提出一种基于GMM-LDA的最优聚类簇特征学习方法,以获得正常模式特征库和入侵模式库的最优特征表示,同时引入模式库自适应更新机制,使入侵检测模型能够适应网络环境动态变化.KDD99数据集和基于Nidsbench的网络虚拟仿真实验平台