相较于传统综合字典学习方法,非参数贝叶斯方法具有显著优势,但其对图像结构全局相似性和变异性的表示能力仍有较大提升空间。针对这个问题,提出了一种基于结构相似性的非参数贝叶斯字典学习算法,该算法基于图像结构的全局相似性对图像进行聚类处理,并在图像的字典稀疏表示中引入块结构特性,提升了字典的结构表示能力。实验表明,所提算法在图像去噪和压缩感知方面的性能均优于目前主流的几种无监督字典学习算法。