针对多目标优化问题求解,提出基于群体分布特征的多目标自适应粒子群优化算法(pdMOPSO).首先借助统计方法分析归档集在决策空间的分布特征,以此划分进化状态,指导全局引导粒子的选择;然后设计粒子重排策略,动态调控种群的分布;最后依据进化状态设计不同的归档集维护策略,实现归档集中分布性和收敛性的均衡.以ZDT、DTLZ和CEC09为测试集,与7种多目标优化算法对比,指标IGD、Spread和ER结果表明,所提出的算法在收敛性和分布性上均有显著优势.