提出一种全局静态环境下移动机器人路径规划的改进势场蚁群算法.该算法采用人工势场法求得的初始路径和机器人与下一个节点之间的距离综合构造启发信息,并引入启发信息递减系数,避免了传统蚁群算法由于启发信息误导所致的局部最优问题;依据零点定理, 提出初始信息素不均衡分配原则,不同的栅格位置赋予不同的初始信息素,降低蚁群搜索的盲目性,提高算法的搜索效率;设定迭代阈值,自适应调节信息素挥发系数,使得该算法具有较高的全局搜索能力,避免出现停滞现象.仿真结果验证了所提出算法的可行性和有效性.