香农的信息熵被广泛用于粗糙集.利用粗糙集中的粗糙熵来检测离群点,提出一种基于粗糙熵的离群点检测方法,并应用于无监督入侵检测.首先,基于粗糙熵提出一种新的离群点定义,并设计出相应的离群点检测算法-----基于粗糙熵的离群点检测(rough entropy-based outlier detection,REOD);其次,通过将入侵行为看作是离群点,将REOD应用于入侵检测中,从而得到一种新的无监督入侵检测方法.通过多个数据集上的实验表明,REOD具有良好的离群点检测性能.另外,相对于现有的入侵检测方法,REOD具有较高的入侵检测率和较低的误报率,特别是其计算开销较小,适合于在海量高维的数据中检测