人群密度估计对于人流监控与人群安全具有重要意义。针对现有算法主要通过不同尺度感受野来学习特征,而无法高效利用多尺度特征的问题,文中设计了一个基于通道域注意力机制的特征融合模块。该模块可以在训练模型时学习特征融合的分布情况,以高效利用多尺度特征。此外,为解决人群数据集的样本有限问题,文中采用了多规模数据增广来训练模型。将新模型在Shanghaitech数据集上进行测试,并在陕西省某旅游景区人群计数数据集上进行验证。实验结果显示,基于通道域注意力机制的人群密度估计算法在MAE与MSE上均优于MCNN,证明了该方法在人群密度估计领域具有良好的应用价值。