针对杂波分布不均匀且密度未知的多目标跟踪问题,提出一种基于稀疏度阶数优化的杂波密度估计算法.首先,剔除在跟踪门内的潜在目标测量,获取杂波测量集;其次,从杂波测量集中构造“稀疏度阶数-超立方体容积”的样本,并利用支持向量回归机对样本拟合;再次,通过梯度法求得拟合曲线的极值点,实现稀疏度阶数在线优化;最后,将优化后的杂波稀疏度估计器嵌入高斯混合概率假设密度滤波器中,实现复杂杂波环境下目标状态与杂波密度联合估计.仿真结果验证了所提出算法的有效性.