在语音情感识别的研究中存在特征集维度过高的问题。高维度的特征向量易造成参数过拟合。因此需要一种合适的特征提取与筛选的方法降低特征维度。自编码器是一种应用广泛的特征降维方法,由此本文提出一种基于栈式自编码器,结合对抗训练的方法并在对抗训练中引入Wasserstein距离构造对抗损失函数进行特征降维。实验结果表明,与原始的对抗自编码器相比,经过改进的自编码器在对特征进行同等程度的降维后,准确率平均提高了3.31%。