核化一类硬划分SVDD、一/二类L2-SVM、L2 支持向量回归和Ranking SVM均已被证明是中心约束最小包含球. 这里将多视角学习引入核化L2-SVM, 提出核化两类多视角L2-SVM (Multi-view L2-SVM), 并证明该核化两类Multi-view L2-SVM 亦为中心约束最小包含球, 进而提出一种多视角核心向量机MvCVM. 所提出的Multi-view L2-SVM 和MvCVM既考虑了视角之间的差异性, 又考虑了视角之间的关联性, 使得分类器在各个视角上的学习结果趋于一致. 人造多视角数据集和真实多视角数据集的实验均表明了Multi-view L