滚动轴承作为风电机组的关键部件,对于整个机组的安全运行起着决定性作用.针对机组滚动轴承故障诊断问题,提出一种节点优化型有向无环图大间隔分布机(O-DAG-LDM)的故障诊断方法.结合DAG多分类扩展性能与LDM二分类器泛化性能的优点,构建一种面向滚动轴承故障诊断的DAG结构扩展式LDM多分类器方法.在DAG-LDM算法框架下,利用优化算法对DAG节点进行优化排列以减小随机排布引起的累积误差,提高LDM故障分类准确率.实验表明,与其他主流智能诊断方法相比,所提出的节点优化型DAG-LDM故障诊断方法具有较高的准确率和更好的抗噪性能.