前言 一、keras提供了三种定义模型的方式 1. 序列式(Sequential) API 序贯(sequential)API允许你为大多数问题逐层堆叠创建模型。虽然说对很多的应用来说,这样的一个手法很简单也解决了很多深度学习网络结构的构建,但是它也有限制-它不允许你创建模型有共享层或有多个输入或输出的网络。 2. 函数式(Functional) API Keras函数式(functional)API为构建网络模型提供了更为灵活的方式。 它允许你定义多个输入或输出模型以及共享图层的模型。除此之外,它允许你定义动态(ad-hoc)的非周期性(acyclic)网络图。 模型是通过创建层的实例(la