张量指数函数已经广泛应用于控制论、图像处理和各个工程领域.鉴于此,在矩阵广义逆的基础上,首次在张量内积空间上定义一种有效的张量广义逆,从而构造张量Padé逼近的一种连分式算法.利用张量t-积成功计算张量的幂,由此递推地给出张量指数函数的幂级数展开式.在前面两个工作的基础上,利用设计的连分式算法逼近张量指数函数,其特点在于,该算法可以编程实现递推计算,而且在计算过程中不必计算张量的乘积,也不必计算张量的逆.给出的两个张量指数函数的数值实验表明,将连分式算法与目前通常使用的截断法进行比较,在不降低逼近阶的条件下,所提出算法是有效的.如果张量的维数较大,基于张量广义逆的连分式算法仍然具有一定优势.