传统模糊??-均值(FCM) 算法要求一个样本对于各个聚类的隶属度之和满足归一化条件, 从而导致算法对噪声和孤立点敏感, 对非均衡分布样本的聚类有效性降低. 针对该问题, 提出一种改进模糊隶属函数约束的FCM聚类算法, 通过放松归一化条件, 推导出新的隶属度划分公式, 并在聚类过程中不断进行隶属度修正, 从而达到消除噪声样本、提高聚类有效性的目的. 最后通过实验结果对比验证了改进算法的正确性.