针对人工蜂群算法存在的计算精度不高、收敛速度较慢的缺点,提出一种多搜索策略协同进化的人工蜂群算法.所提出的算法在引领蜂和跟随蜂进行邻域搜索时,动态调整搜索的维数以提高搜索效率,并结合人工蜂群算法不同搜索策略的特点,使其协同进化,以平衡算法的局部搜索能力和全局搜索能力.14个基准函数的仿真实验结果表明,所提出的算法能有效改善寻优性能,增强摆脱局部最优的能力.与其他一些改进的人工蜂群算法相比,具有较快的收敛速度和较高的求解精度.