使用重复元素的网络(VGG) AlexNet在LeNet的基础上增加了3个卷积层。但AlexNet作者对它们的卷积窗口、输出通道数和构造顺序均做了大量的调整。虽然AlexNet指明了深度卷积神经网络可以取得出色的结果,但并没有提供简单的规则以指导后来的研究者如何设计新的网络。我们将在本章的后续几节里介绍几种不同的深度网络设计思路。 本节介绍VGG,它的名字来源于论文作者所在的实验室Visual Geometry Group [1]。VGG提出了可以通过重复使用简单的基础块来构建深度模型的思路。 VGG块 VGG块的组成规律是:连续使用数个相同的填充为1、窗口形状为的卷积层后接上一个步幅为2、窗