飞行员的疲劳状态识别具有重要的研究意义和应用价值.针对飞行员疲劳状态识别的复杂性和准确性,提出一种新的基于脑电信号的飞行员疲劳状态识别深度学习模型.在对飞行员的脑电信号进行滤波分解的基础上,提取delta波(0.5sim4Hz)、theta波(5sim8Hz)、alpha波(7sim14Hz)和beta波(14sim30Hz),将其重组信号作为深度收缩稀疏自编码网络-Softmax模型的输入向量,用以对飞行员疲劳状态的识别,所得到的实验结果与深度自编码网络-Softmax模型和传统方法PCA-Softmax模型识别结果进行比较,结果表明所建立的深度学习模型具有很好的分类效果,分类准确率可达91