分析了小波神经网络(WNN)、灰色神经网络(GNN)、支持向量机(SVM)预测方法的原理,利用粒子群优化(PSO)算法对这3种基本预测方法进行了结构参数优化。将WNN、GNN、SVM与PSO-BP算法进行组合,推导得出了组合预测模型最优权系数的计算方法,并优化了组合预测模型拓扑结构参数。算例分析结果表明:经过PSO算法优化后,WNN、GNN、SVM预测模型的预测精度得到了提高,其组合模型较单一模型有更高的预测精度。