针对核函数选择对最小二乘支持向量机回归模型泛化性的影响, 提出一种新的基于????- 范数约束的最小二乘支持向量机多核学习算法. 该算法提供了两种求解方法, 均通过两重循环进行求解, 外循环用于更新核函数的权值, 内循环用于求解最小二乘支持向量机的拉格朗日乘数, 充分利用该多核学习算法, 有效提高了最小二乘支持向量机的泛化能力, 而且对惩罚参数的选择具有较强的鲁棒性. 基于单变量和多变量函数的仿真实验表明了所提出算法的有效性.