提出一种新的基于流形学习的数据降维及特征提取方法: 局部保持PCA 算法(LPPCA). 通过在PCA 的优化 目标中融入流形学习的思想, 不仅使投影得到的低维空间和原始样本空间具有相似的全局结构, 并且保持了相似的 局部近邻结构, 克服了传统PCA 方法只关注全局结构特征而忽略局部流形特征的缺陷, 同时给出了LPPCA 在故障 检测中的应用方法. S-Curve 和Swiss-roll 曲面数值仿真和TE 过程仿真验证了算法的有效性和优越性.