针对中期电力负荷预测, 提出基于贪心核主元回归(GKPCR)、贪心核岭回归(GKRR) 的特征提取建模方法. 通过对核矩阵的稀疏逼近, GKPCR和GKRR两种贪心核特征提取方法旨在寻找特征空间中数据的低维表示, 计算需求低, 适用于大数据集的在线学习. 将所提出的方法应用于不同地区的电力负荷中期峰值预测, 并与现有预测方法进行了比较. 实验结果表明, 在同等条件下, 所提出的方法能有效地改进预测精度, 而且性能更好, 显示了其有效性和应用潜力.