针对单一特征目标跟踪算法鲁棒性较差的问题, 提出一种基于特征可分性和稳定性度量的多特征融合目标跟踪算法. 在粒子滤波框架下, 通过计算不同特征对目标和背景的可区分性和稳定性, 设置重要性权值并自适应选择区分能力强、稳定性好的特征描述目标, 建立多特征融合目标模型. 在状态转移过程中, 给出一种基于特征稳定性度量的选择性模板更新策略, 并进行遮挡处理. 实验结果表明, 所提出的算法能够在复杂场景下鲁棒地跟踪目标.