针对基于深度卷积神经网络的高光谱图像分类算法中存在的空间分辨率下降、池化操作引发特征丢失从而导致分类精度下降的问题,设计了一种由双边融合块构成的双边融合块网络。1×1卷积与超链接构成双边融合块上结构,传递局部空间特征,池化、卷积、反卷积、上采样组成下结构,强化高效判别特征。在3个基准高光谱图像数据集上的实验结果表明,该模型优于其他同类分类模型。