随着全球数据量的激增,集中式云计算无法提供低时延、高效率的视频监控服务。基于此,提出分布式边缘计算模型,在边缘端直接处理视频数据,减少网络的传输压力,缓解中央云服务器的计算负担,降低视频监控系统的处理时延。结合联邦学习算法,采用轻量级神经网络,分场景训练模型,并将其部署于计算能力受限的边缘设备上。实验结果表明,对比通用神经网络模型,所提方法检测准确度提高18%,模型训练时间有效减少。