很多机器学习算法已经被应用于医学图像处理。为了进一步处理医学图像,使得医学图像的分割质量好、配准效果好、融合效果佳、含噪量低,本文结合机器学习原理,改进传统医学处理方式,针对常见的四种医学图像,分别从图像分割、融合、配准和去噪等四个方面进行阐述。结果表明机器学习在医学图像中的应用,大幅改进了图像处理的效果、提高了图像的精度,为医生分析病情和手术操作提供更高的可靠性。