针对 Sarsa 算法存在的收敛速度较慢的问题,提出一种改进的基于值函数迁移的启发式 Sarsa 算法(VFT-HSA)。该算法将Sarsa算法与值函数迁移方法相结合,引入自模拟度量方法,在相同的状态空间和动作空间下,对新任务与历史任务之间的不同状态进行相似性度量,对满足条件的历史状态进行值函数迁移,提高算法的收敛速度。此外,该算法结合启发式探索方法,引入贝叶斯推理,结合变分推理衡量信息增益,并运用获取的信息增益构建内在奖赏函数作为探索因子,进而加快算法的收敛速度。将所提算法用于经典的Grid World问题,并与Sarsa算法、Q-Learning算法以及收敛性能较好的VFT-Sarsa算法