基于矩阵扰动理论, 研究利用累积法估计GM(1,1) 模型参数时解的稳定性问题. 研究结果表明: 累积的阶数越高, 解的扰动界越大; 在扰动值相等的情况下, 新数据相比于老数据, 解的扰动界较小; 新数据对解的影响较小, 这与新信息优先原理相矛盾. 对此, 提出分数阶累积法, 当阶数小于1 时, 这种矛盾有所缓解, 解的扰动界也较小. 最后通过具体实例验证了分数阶累积法的实用性与可靠性.