为提高引力搜索算法的优化能力, 通过在原始算法中融合量子计算, 提出一种量子行为引力搜索算法. 该算法采用类似量子行为粒子群优化的寻优机制, 在每步迭代中, 计算个体适应度, 根据适应度计算个体质量, 取前K 个质量最大的个体作为候选集. 采用轮盘赌方法在候选集中选择一个作为Delta 势阱的中心, 调整其他个体向该中心移动完成一步优化, 在优化过程中使K 值单调下降, 以期达到探索和开发的平衡. 标准函数极值优化的实验表明, 所提出的算法比原算法在优化能力和优化效率两方面都有明显提高.