受一个求解非线性奇异方程组迭代格式的启示,将两种牛顿改进算法推广成一般形式,并将其发展为一类求解具有奇异雅可比矩阵的非线性方程组的牛顿改进算法.首先,描述这类新算法的迭代格式,并导出其收敛阶,该新格式每步迭代仅需计算一次函数值和一次导函数值;然后,对测试函数进行检验,并与牛顿算法及其他奇异牛顿算法进行比较,从而验证该算法的快速收敛性;最后,通过两个实际问题验证所提出算法的有效性.