针对未知探测概率下多目标跟踪问题, 提出一种基于时变滤波算法的多目标概率假设密度(PHD) 滤波器. 算法推导了未知探测概率PHD递推式, 提出了将未知探测概率转化为目标的丢失与接收事件, 并依此建立了目标跟 踪的马尔科夫模型, 给出了该模型下时变卡尔曼滤波最优解, 进而在高斯混和PHD(GMPHD) 框架下推导了算法闭集解. 仿真实验表明, 所提出算法在未知且随时间变化的探测概率情形下, 仍能实时地跟踪各目标, 具有良好的工程应用前景.