针对具有时滞因果关系的小样本系统建模问题, 提出一种灰色多变量时滞GM(1,??) 模型及其求解方法; 考虑到相关变量累加序列变化量较大的情形下, 驱动项不能被视为灰常量的问题, 给出了时滞GM(1,??) 模型的一种派生模型. 在此基础上, 通过数值仿真和实例分析验证了新模型的有效性. 数值结果表明: 时滞GM(1,??) 模型能够较好地描述和预测含时滞特征的小样本数据系统的运行规律, 不考虑相关因素的时滞作用时, 时滞GM(1,??) 模型退化为经典的GM(1,??) 模型.