针对多处理器系统任务调度复杂问题, 在自适应差分进化算法基础上增加惯性速度分项, 提出一种称为惯性速度差分进化(IVDE) 的改进算法, 以避免陷入局部最优解. 结合启发式任务列表, 对算法的状态编码提出了处理器列表(PL)、部分偏序任务列表(PTL) 和全部任务列表(CTL) 等3 种形式. 通过求解随机生成的任务调度标准图和真实求解任务问题, 进行了数值仿真验证, 其中PTL-IVDE 算法相比蚁群优化(ACO) 算法、混合遗传算法(TLPLC-GA), 能快速求得更好的任务调度方案.