最近的视觉语言(VL)研究已经显示出了惊人的进展,方法是通过使用转换器模型从大量的图像文本对中学习通用表示形式,然后对下游的VL任务进行微调。尽管现有研究集中在使用大型预训练模型来实现高精度上,但构建轻量级模型在实践中具有重要价值,但探索却很少。..

MiniVLM: A Smaller and Faster Vision-Language Model

Recent vision-language (VL) studies have shown remarkable progress by learning generic representations from massive image-text pairs with transformer models and then fine-tuning on downstream VL tasks. While existing research has been focused on achieving high accuracy with large pre-trained models, building a lightweight model is of great value in practice but is less explored.In this paper, we propose a smaller and faster VL model, MiniVLM, which can be finetuned with good performance on various downstream tasks like its larger counterpart. MiniVLM consists of two modules, a vision feature extractor and a transformer-based vision-language fusion module. We design a Two-stage Efficient feature Extractor (TEE), inspired by the one-stage EfficientDet network, to significantly reduce the time cost of visual feature extraction by $95\%$, compared to a baseline model. We adopt the MiniLM structure to reduce the computation cost of the transformer module after comparing different compact BERT models. In addition, we improve the MiniVLM pre-training by adding $7M$ Open Images data, which are pseudo-labeled by a state-of-the-art captioning model. We also pre-train with high-quality image tags obtained from a strong tagging model to enhance cross-modality alignment. The large models are used offline without adding any overhead in fine-tuning and inference. With the above design choices, our MiniVLM reduces the model size by $73\%$ and the inference time cost by $94\%$ while being able to retain $94-97\%$ of the accuracy on multiple VL tasks. We hope that MiniVLM helps ease the use of the state-of-the-art VL research for on-the-edge applications.