提出了一种基于多尺度递归网络的图像超分辨率网络模型,该模型主要由多个多尺度特征映射单元级联而成,每个单元分别包含一组不同尺度的特征提取层、一个融合层以及一个特征映射层。特征提取直接在原始低分辨率图像上进行,最后采用亚像素卷积重构高分辨率图像。训练阶段使用自适应矩估计优化方法加速网络模型的收敛。实验结果表明,所提算法取得了较好的超分辨率结果,图像纹理清晰、边缘锐利,视觉效果明显得到增强。在Set5、Set14、BSD100以及Urban100等常用测试集上的客观评价指标(PSNR和SSIM)均高于现有的几种主流算法。