提出了一种基于融合i-vector特征的长短时记忆(LSTM)循环神经网络模型,用于腹腔镜扶持器语音控制,在小训练样本下实现对特定医生语音中的短时、孤立词指令的识别。该模型以LSTM循环神经网络作为基础模型,以梅尔频率倒谱系数(MFCC)作为输入特征参数,将i-vector特征作为LSTM循环神经网络的深层输入信息,与神经网络中LSTM层后的深层特征信息进行拼接,达到参数融合的目的,实现对特定主刀医生语音指令的准确识别以及对非主刀医生语音指令的拒识别,为腹腔镜操作提供安全智能的语音识别方案。使用自建语音库进行实验,分别验证所提算法对训练库内语音的识别性能以及对训练库外语音的拒识别性能。实验结果