基于卷积神经网络模型,提出一种立体图像舒适度评价方法。该方法无须提前根据特定的任务从图像中人工提取具体的特征,而是模拟人脑处理机制对图像进行层次化的抽象处理,自主提取特征。该方法采用三通道卷积神经网络结构,分别对原始图像进行主成分分析,以及32×32、256×256两种尺度的分块处理得到三条通道的输入数据集,根据输入数据设计每条通道的网络结构。采用两种尺寸分块处理得到不同尺寸的图像块特征信息,采用主成分分析降维处理得到原始图像的整体信息。此外,通过随机丢弃、局部响应归一化等方法提升算法的评价性能。实验结果表明,以修正线性单元为激活函数、输出层用Softmax分类器,对天津大学TJU立体图像数据