近十年,深度学习成为人工智能和机器学习这顶皇冠上的明珠,在声学、图像和自然语言处理领域展示了顶尖的性能。深度学习提取数据底层复杂模式的表达能力广受认可。但是,现实世界中普遍存在的图却是个难点,图表示对象及其关系,如社交网络、电商网络、生物网络和交通网络。图也被认为是包含丰富潜在价值的复杂结构。因此,如何利用深度学习方法进行图数据分析近年来吸引了大量的研究者关注。该问题并不寻常,因为将传统深度学习架构应用到图中存在多项挑战:不规则领域:与图像不同,音频和文本具备清晰的网格结构,而图则属于不规则领域,这使得一些基础数学运算无法泛化至图。例如,为图数据定义的卷积和池化操作并不是直接的,而这些是卷积神