在行人检测领域,当场景很复杂时,一般行人检测算法往往得不到很好的检测效果。比如在行人很多且靠的很近时,用基于梯度直方图的检测算法时,检测效果不是很好。由P.Felzenszwa提出一种以可变形部件模型为基础的检测算法,能够检测多样变化的目标类型并且在挑战Pascal目标检测中达到较高水平。该算法使用隐变量支持向量机,是一种在支持向量机基础上添加潜在变量而重新构建的支持向量机。本文提出了一种基于可变形部件模型的行人检测算法,通过建立多人体模板,在行人相互靠近有重叠的场景下有着很好的检测效果。