基于时间感知和自适应空间正则化的相关滤波跟踪算法
针对相关滤波器的空间正则化权重与目标内容无关和跟踪过程中模型退化等问题,提出一种基于时间感知和自适应空间正则化的相关滤波跟踪算法。首先,提取灰度特征、CN(color name)特征和方向梯度直方图(HOG)特征来提升算法模型对目标的表达能力;其次,通过图像显著性检测算法获得带有目标内容信息的空间正则化初始权重;然后,在目标函数中加入自适应空间正则化项来缓解边界效应对相关滤波器的影响;最后,加入时间感知项使相关滤波器学习到相邻帧之间的信息,降低算法模型在处理不准确样本时发生过拟合的风险。在OTB-2013和OTB-2015公开数据集上对所提算法进行性能评估实验,结果表明,所提算法在多种复杂场景
暂无评论