多粒度模糊粗糙集是经典多粒度粗糙集模型在模糊环境下的有益扩展,然而,已有的多粒度模糊粗糙集并未考虑考虑数据的测试代价,为解决这一问题,本文提出了基于测试代价敏感的多粒度模糊粗糙集模型,分析了其相关性质。研究表明,本文提出的模型是传统多粒度模型在应用背景下的有力扩展。