基于低秩正则化异构张量分解的子空间聚类算法
张量分解是解决高维数据分析问题的有力工具。传统张量Tucker分解模型多采用各项同性假设,即各个因子矩阵具有相同的约束条件(例如正交、非负等),但该种假设不适用于异构张量数据分析。本文提出了一种基于低秩正则化的异构张量分解(LRRHTD)算法,并用于子空间聚类任务。低秩正则化的异构张量分解核心思想是对原始张量寻求一组正交因子矩阵的集合,将高维张量映射到低维的潜在子空间中,同时在最后的因子矩阵上引入低秩约束以获得可用于聚类的全局低秩结构表征。此外,设计了一种基于增广拉格朗日乘子的优化方法对所提算法进行求解。在两个公开数据集上的实验表明,本文提出的方法不仅可以在较少次数的迭代内达到收敛,而且与现有
暂无评论