过拟合与欠拟合 专业名词解释: 泛化误差(generalization error):指模型在任意一个测试数据样本上表现出来的误差的期望,我们通常用测试集上的误差来近似看待. 验证集(validation set):预留一部分训练数据集出来用于验证和看模型的表现结果,并用来进行模型选择 K折交叉验证(K-fold cross-validation):针对训练数据不够用时的一种改善方法。把原始训练数据集分割成不重合的K份子数据集,然后做K次的训练和验证,最后对这K次的训练误差和验证误差分别求平均 欠拟合 模型无法得到较低的训练误差,我们将这一现象称作欠拟合(underfitting) 过拟合 模