Convolutional Neural Networks 学而习之:Fundamentals of Convolutional Neural Networks 使用全连接层的局限性: 图像在同一列邻近的像素在这个向量中可能相距较远。它们构成的模式可能难以被模型识别。 对于大尺寸的输入图像,使用全连接层容易导致模型过大。 使用卷积层的优势: 卷积层保留输入形状。 卷积层通过滑动窗口将同一卷积核与不同位置的输入重复计算,从而避免参数尺寸过大。 卷积神经网络就是含卷积层的网络。 LeNet 模型 90%以上的参数都在全连接层块 LeNet分为卷积层块和全连接层块两个部分 解释: 卷积层块