为有效融合多光谱图像的光谱信息和全色图像的空间细节信息,提出了一种基于混沌蜂群优化和改进脉冲耦合神经网络(PCNN)的非下采样Shearlet变换(NSST)域图像融合方法。首先对多光谱图像进行Intensity-Hue-Saturation(IHS)变换,全色图像的直方图按照多光谱图像亮度分量的直方图进行匹配;然后分别对多光谱图像的亮度分量和新全色图像进行NSST变换,对低频分量使用改进加权融合算法进行融合,以互信息作为适应度函数,利用混沌蜂群算法找到最优加权系数。对高频分量采用改进脉冲耦合神经网络(PCNN)方法进行融合,再经NSST逆变换和IHS逆变换得到融合图像。本文方法在主观视觉效果