一种基于混合二叉树结构的多类支持向量机分类算法
为提高多类支持向量机的分类效率,提出了一种基于混合二叉树结构的多类支持向量机分类算法。该混合二叉树中的每个内部结点对应一个分割超平面,该超平面通过计算两个距离最远的类的质心而获得,即该超平面为连接两质心线段的垂直平分线。每个终端结点(即决策结点)对应一个支持向量机,它的训练集不再是质心而是两类(组)样本集。该分类模型通常是超平面和支持向量机的混合结构,其中超平面实现训练早期的近似划分,以提升分类速度;而支持向量机完成最终的精确分类,以保证分类精度。实验结果表明,相比于经典的多类支持向量机方法,该算法在保证分类精度的前提下,能够有效缩短计算时间,提升分类效率。
暂无评论